These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Energy transfer in calixarene-based cofacial-positioned perylene bisimide arrays.
    Author: Hippius C, Schlosser F, Vysotsky MO, Böhmer V, Würthner F.
    Journal: J Am Chem Soc; 2006 Mar 29; 128(12):3870-1. PubMed ID: 16551069.
    Abstract:
    The synthesis of multichromophoric perylene bisimide-calix[4]arene arrays with up to five perylene units (containing orange, violet, and green perylene bisimide chromophores) and of monochromophoric model compounds was achieved by subsequent imidization of mono-Boc functionalized calix[4]arene linkers with three different types of perylene bisimide dye units. The optical properties of all compounds were studied with UV/vis absorption and steady state and time-resolved fluorescence spectroscopy. Upon excitation of the inner orange dye at 490 nm of array 3, strong fluorescence emission of the outer green perylene bisimide (PBI) chromophore at 744 nm is observed. The fluorescence excitation spectra of compounds 3 and 4 (lambdadet = 850 nm) show all absorption bands of the parent chromophores (e.g., all perylene units contribute to the emission from S1 state of the green PBI). Thus, the fluorescence emission and excitation spectra as well as time-resolved data of fluorescence lifetimes in the absence (tauD = 5.1 ns) and in the presence of an acceptor (tauDA = 0.8 ns) suggest efficient energy transfer processes between the perylene bisimide dye units. For the bichromophoric array 4, the energy transfer rate is calculated to a value of 1.05 x 109 s-1. These results demonstrate highly efficient energy transfer in cofacially assembled dye arrays.
    [Abstract] [Full Text] [Related] [New Search]