These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Animal carcinogenicity studies: implications for the REACH system. Author: Knight A, Bailey J, Balcombe J. Journal: Altern Lab Anim; 2006 Mar; 34 Suppl 1():139-47. PubMed ID: 16555967. Abstract: The 2001 European Commission proposal for the Registration, Evaluation and Authorisation of Chemicals (REACH) aims to improve public and environmental health by assessing the toxicity of, and restricting exposure to, potentially toxic chemicals. The greatest benefits are expected to accrue from decreased cancer incidences. Hence the accurate identification of chemical carcinogens must be a top priority for the REACH system. Due to a paucity of human clinical data, the identification of potential human carcinogens has conventionally relied on animal tests. However, our survey of the US Environmental Protection Agency's (EPAs) toxic chemicals database revealed that, for a majority of the chemicals of greatest public health concern (93/160, i.e. 58.1%), the EPA found animal carcinogenicity data to be inadequate to support classifications of probable human carcinogen or non-carcinogen. A wide variety of species were used, with rodents predominating; a wide variety of routes of administration were used; and a particularly wide variety of organ systems were affected. These factors raise serious biological obstacles that render accurate extrapolation to humans profoundly difficult. Furthermore, significantly different International Agency for Research on Cancer assessments of identical chemicals, indicate that the true human predictivity of animal carcinogenicity data is even poorer than is indicated by the EPA figures alone. Consequently, we propose the replacement of animal carcinogenicity bioassays with a tiered combination of non-animal assays, which can be expected to yield a weight-of-evidence characterisation of carcinogenic risk with superior human predictivity. Additional advantages include substantial savings of financial, human and animal resources, and potentially greater insights into mechanisms of carcinogenicity.[Abstract] [Full Text] [Related] [New Search]