These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Renal atrial peptide receptors and natriuresis in two-kidney, one clip hypertension.
    Author: Paul RV.
    Journal: Hypertension; 1991 Oct; 18(4):535-42. PubMed ID: 1655651.
    Abstract:
    It has been suggested that the impaired natriuretic response of the clipped kidney in two-kidney, one clip hypertensive rats is related to downregulation of renal atrial natriuretic peptide receptors. To test this hypothesis, blood volume expansion and atrial peptide binding studies were performed in this model. Infusion of 1% and then 1.5% body weight donor blood (n = 6) caused a progressive increase in plasma immunoreactive atrial natriuretic peptide (107 +/- 26 to 168 +/- 31 to 427 +/- 154 pg/ml, p less than 0.001); the sodium excretion of the nonclipped kidney rose from 230 to 2,200 to 4,000 neq/min (p less than 0.01) but that of the clipped kidney did not rise significantly. There was a highly significant correlation between log cyclic guanosine monophosphate and log sodium excretion by the nonclipped (r2 = 0.749) but not the clipped (r2 = 0.046) kidney. Between clipped and nonclipped kidneys, the association constant (5.26 +/- 0.89 versus 5.17 +/- 0.64 x 10(9)/mol) and apparent binding site density (575 +/- 92 versus 500 +/- 74 fmol/mg protein) for atrial peptide binding in isolated glomeruli did not differ. Assay of atrial peptide-induced cyclic guanosine monophosphate release by isolated glomeruli showed that clipped and nonclipped kidneys were equally responsive. Binding affinity and receptor density did not differ in homogenates prepared from inner medullas of clipped and nonclipped kidneys. These results show that the blunted natriuretic response in clipped kidneys was not associated with any relative decrease in number or function of glomerular or papillary atrial natriuretic peptide receptors.
    [Abstract] [Full Text] [Related] [New Search]