These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dietary fish oils modify adipocyte structure and function.
    Author: Parrish CC, Pathy DA, Parkes JG, Angel A.
    Journal: J Cell Physiol; 1991 Sep; 148(3):493-502. PubMed ID: 1655818.
    Abstract:
    Dietary fish oils, enriched with omega-3 fatty acids (e.g., MaxEPA fish oil), inhibit lipogenesis and have a marked hypotriglyceridemic effect in man and experimental animals. Dietary omega-3 fatty acids also reduce adipose tissue trophic growth in rats. To understand the metabolic basis for this, we measured the effect of fish oil feeding upon rat plasma triglyceride concentration, fat pad mass, fat cell size, fat cell lipolysis, as well as lipoprotein binding to adipocyte plasma membranes. In adolescent (250 g) male Wistar rats fed 20% (w/w) fish oil supplemented diets for 3 weeks, plasma triglyceride levels and epididymal and perirenal fat pad mass were significantly (P less than 0.005) reduced compared to pair-fed controls given 20% lard diets. These differences in fat pad mass between the diets were greater than differences in whole animal mass or in the mass of livers, testes, kidneys, spleens, or hearts. Isoproterenol-stimulated lipolysis was significantly (P less than 0.005) higher in fish oil fed rats than in pair-fed controls. In young (100 g) rats plasma triglyceride levels were 10 times lower in the fish oil fed group after 5 weeks as compared to the lard-fed controls. This was accompanied by a reduction in epididymal and perirenal fat pad mass as well as a 2-3-fold decrease in adipocyte volumes; there was no significant difference between the two groups in fat cell number in each region. Plasma membranes of epididymal adipocytes from fish oil fed rats bound significantly (P less than 0.001) less HDL1 than the lard-fed rats, possibly as a result of a reduction in fat cell size and/or alteration of plasma membrane structure. Thus in both young and old rats, the reduction in plasma triglyceride concentration in conjunction with increased hormone-stimulated lipolysis may explain in part the selective reduction in adipose tissue trophic growth accompanying fish oil consumption.
    [Abstract] [Full Text] [Related] [New Search]