These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and antiviral activity of certain guanosine analogues in the thiazolo[4,5-d]pyrimidine ring system. Author: Kini GD, Anderson JD, Sanghvi YS, Lewis AF, Smee DF, Revankar GR, Robins RK, Cottam HB. Journal: J Med Chem; 1991 Oct; 34(10):3006-10. PubMed ID: 1656042. Abstract: Several sugar-modified nucleoside derivatives of the purine analogue 5-amino-3-beta-D-ribofuranosylthiazolo[4,5-d]pyrimidine-2,7-dione (1) were synthesized. Phosphorylation of 1 using POCl3 resulted in 5'-monophosphate 2, which was subsequently converted to 3',5'-cyclic phosphate 3, by reported methods. 5'-Sulfamoyl derivative 4 was synthesized by treatment of the 2,3-O-isopropylidene derivative of 1 with chlorosulfonamide followed by acid deprotection. Compounds 5-7, the 5'-deoxy, the tri-O-acetyl, and the 2'-deoxy derivatives of 1, respectively, were synthesized by glycosylation of 5-aminothiazolo[4,5-d]pyrimidine-2,7-dione, the aglycon of 1, with the appropriate sugar moieties, utilizing the Vorbruggen procedure. Oxidative cleavage of the C2'-C3' bond in 1 followed by reduction with sodium borohydride led to "seco" analogue 8. Nucleosides 2-8 were evaluated for antiviral activity in vivo against the Semliki Forest virus. The activity of compounds 2, 5, and 7 were similar to that of 1. Cyclic phosphate 3 was toxic at the high dose and weakly active at the lower dose. Compounds 4, 6, and 8 were inactive in this system.[Abstract] [Full Text] [Related] [New Search]