These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of carboxyl-terminal truncation on structure and lipid interaction of human apolipoprotein E4. Author: Tanaka M, Vedhachalam C, Sakamoto T, Dhanasekaran P, Phillips MC, Lund-Katz S, Saito H. Journal: Biochemistry; 2006 Apr 04; 45(13):4240-7. PubMed ID: 16566598. Abstract: Apolipoprotein (apo) E4 has been identified as a major risk factor for Alzheimer's disease. Recently, apoE4 was found to undergo proteolytic cleavage in Alzheimer's disease brains, resulting in neurotoxic C-terminal-truncated fragments. In this study, we examined the effect of progressive truncation of the C-terminal domain in apoE4 on its lipid-free structure and lipid binding properties. Circular dichroism measurements demonstrated that deletion of residues 273-299 or 261-299 significantly decreased the number of helical residues, suggesting that the C-terminal residues 261-299 have alpha-helical structure. Although the progressive deletions in the C-terminal domain appear to somewhat increase thermal stability, apoE4 (delta273-299) and apoE4 (delta261-299) showed stability similar to that of the apoE4 22-kDa fragment (residues 1-191) when denatured with guanidine-HCl, indicating that residues 192-272 have a negligible effect on the stability of the C-terminal-truncated apoE4. Comparison of Trp-264 fluorescence in single Trp mutants of full-length and C-terminal-truncated apoE4 (delta273-299) indicated that the C-terminal domain structure in the latter is both less organized and cooperative. In addition, comparison of the binding of the C-terminal-truncated mutants to a hydrophobic fluorescent dye and to lipid emulsions revealed that residues 261-272 create a hydrophobic site which is critical for lipid binding. These results suggest that removal of a hydrophobic C-terminal alpha-helical segment (residues 273-299) to create C-terminal-truncated apoE4 forms found in brain leads to less organized C-terminal structure while still retaining a second alpha-helical lipid-binding region (residues 261-272) that is available for interaction with cell membranes and other proteins such as amyloid beta peptide.[Abstract] [Full Text] [Related] [New Search]