These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular matrix dynamics associated with tissue-engineered intravascular sclerotherapy. Author: Vogel AM, Smithers CJ, Kozakewich HP, Zurakowski D, Moses MA, Burrows PE, Fauza DO, Fishman SJ. Journal: J Pediatr Surg; 2006 Apr; 41(4):757-62. PubMed ID: 16567189. Abstract: BACKGROUND: The extracellular dynamics after intravascular sclerotherapy with an injectable, fibroblast-based engineered construct is unknown. METHODS: Rabbits underwent ethanol sclerotherapy of a jugular vein segment. Control animals (n = 40) underwent no further treatment or an acellular collagen hydrogel was injected. Experimental animals (n = 20) received a tissue-engineered construct. After 1, 2, 4, and 20 to 24 weeks, segments were evaluated for collagen, glycosaminoglycan (GAG), matrix metalloproteinase (MMP) 2 and 9, and tissue inhibitors of MMP (TIMPs) 1 and 2 and scored on a scale of 0 to 3. Groups and time points were compared using nonparametric statistical analysis. RESULTS: Collagen content was higher in animals that received fibroblasts (P < .05). Glycosaminoglycan analysis showed a higher grade only at 1 week (P < .05). Collagen and GAG deposition were prominent at weeks 1 through 4, and decreased over time. Both MMP-2 and MMP-9 and TIMP-1 and TIMP-2 grade decreased with time (P < .01) in all groups, with no differences between groups. CONCLUSION: Enhancement of intravascular sclerotherapy by tissue engineering stems, at least in part, from increased local deposition of collagen and GAG. MMP and TIMPs may play a role in recanalization after experimental sclerotherapy. Tissue engineering may be a valuable adjunct for the treatment of vascular malformations.[Abstract] [Full Text] [Related] [New Search]