These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis.
    Author: Meier JJ, Kjems LL, Veldhuis JD, Lefèbvre P, Butler PC.
    Journal: Diabetes; 2006 Apr; 55(4):1051-6. PubMed ID: 16567528.
    Abstract:
    Type 2 diabetes is characterized by an approximately 60% loss of beta-cell mass, a marked defect in postprandial insulin secretion, and a failure to suppress postprandial glucagon concentrations. It is possible that postprandial hyperglucagonemia in type 2 diabetes is due to impaired postprandial insulin secretion. To address this, we studied eight adult Goettingen minipigs before and after an approximately 60% reduction in beta-cell mass induced by alloxan. Pigs were studied fasting and after ingestion of a mixed meal. Insulin and glucagon secretion were determined by deconvolution of blood hormone concentrations measured at 1-min intervals. The relationship between insulin and glucagon release was analyzed using cross-correlation and forward versus reverse cross-approximate entropy. We report that glucagon and insulin were secreted in approximately 4-min pulses. Prealloxan, postprandial insulin secretion drove an approximately 20% suppression of glucagon concentrations (P < 0.01), through inhibition of glucagon pulse mass. The alloxan-induced approximately 60% deficit in beta-cell mass lead to an approximately 70% deficit in postprandial insulin secretion and loss of the postprandial insulin-driven suppression of glucagon secretion. We conclude that postprandial hyperglucagonemia in type 2 diabetes is likely due to loss of intraislet postprandial suppression of glucagon secretion by insulin.
    [Abstract] [Full Text] [Related] [New Search]