These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Paradoxical effects of hydrogen peroxide on human airway anion secretion.
    Author: Ohashi T, Ito Y, Matsuno T, Sato S, Shimokata K, Kume H.
    Journal: J Pharmacol Exp Ther; 2006 Jul; 318(1):296-303. PubMed ID: 16569755.
    Abstract:
    The present study concerns intriguing effects of hydrogen peroxide (H2O2) on cAMP-mediated anion secretion in polarized human airway epithelia. Although H2O2 applied to the apical and basolateral membrane increases short-circuit currents (ISC) with analogous properties, it has opposite effects on subsequent cAMP-activated ISC responses. Namely, forskolin (FK)-induced ISC responses were down-regulated by the apical presence of H2O2, whereas they were up-regulated by its basolateral presence. Despite this contrasting effect, oxidative stimuli from either aspect of the monolayer hindered FK-induced increments in cytosolic cAMP levels and apical membrane Cl- conductance. The site-dependent effects of H2O2 were reproduced in the responses to 8-bromo-cAMP. Estimation of the anionic composition of the ISC revealed that the FK up-regulated both bumetanide [an Na+-K+-2Cl- cotransporter (NKCC1) inhibitor]-sensitive and 4,4'-dinitrostilbene-2,2'-disulfonic acid [an HCO3--dependent anion transporter (NBC1/AE2) inhibitor]-sensitive ISC in the control, whereas the up-regulation evidently favored bumetanide-sensitive ISC in the basolateral presence of H2O2. The FK-induced NKCC1 augmentation after exposure to basolateral H2O2 was counteracted by cytochalasin D, an inhibitor of microfilament function, but not by charybdotoxin, a blocker of the intermediate conductance Ca2+-activated K+ channel, whose activation could be related to NKCC1-mediated Cl- secretion. These observations suggest that basolaterally but not apically applied H2O2 potentiates subsequent cAMP-mediated Cl- secretion by an increase in Cl- uptake via basolateral NKCC1, whose sensitivities to cAMP/protein kinase A are up-regulated, overcoming the H2O2-induced inhibition of cAMP-mediated apical anion conductance. The basolateral membrane-specific effects of H2O2 may be relevant to the basolateral cytoskeleton, which is believed to interact with NKCC1.
    [Abstract] [Full Text] [Related] [New Search]