These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of geometry relaxation on the energies of the S1 and S2 states of violaxanthin, zeaxanthin, and lutein.
    Author: Dreuw A.
    Journal: J Phys Chem A; 2006 Apr 06; 110(13):4592-9. PubMed ID: 16571067.
    Abstract:
    Precise knowledge of the excitation energies of the lowest excited states S(1) and S(2) of the carotenoids violaxanthin, lutein, and zeaxanthin is a prerequisite for a fundamental understanding of their role in light harvesting and photoprotection during photosynthesis. By means of density functional theory (DFT) and time-dependent DFT (TDDFT), the electronic and structural properties of the ground and first and second excited states are studied in detail. According to our calculations, all-s-cis-zeaxanthin and s-cis-lutein conformers possess lower total ground-state energies than the corresponding s-trans conformers. Thus, only s-cis isomers are probably physiologically relevant. Furthermore, the influence of geometric relaxation on the energies of the ground state and S(1) and S(2) states has been studied in detail. It is demonstrated that the energies of these states change significantly if the carotenoid adopts the equilibrium geometry of the S(1) state. Considering these energetic effects in the interpretation of S(1) excitation energies obtained from fluorescence and transient absorption spectroscopy shifts the S(1) excitation energies about 0.2 eV to higher energy above the excitation energy of the chlorophyll a.
    [Abstract] [Full Text] [Related] [New Search]