These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resonance Raman study on intact pea phytochrome and its model compounds: evidence for proton migration during the phototransformation.
    Author: Mizutani Y, Tokutomi S, Aoyagi K, Horitsu K, Kitagawa T.
    Journal: Biochemistry; 1991 Nov 05; 30(44):10693-700. PubMed ID: 1657153.
    Abstract:
    Resonance Raman (RR) scattering from intact pea phytochrome was observed in resonance with the blue band at ambient temperature. The relative populations of the red-light-absorbing form (Pr) and far-red-light-absorbing form (Pfr) under laser illumination were estimated from the absorption spectra. The most prominent RR band of Pr obtained by 364-nm excitation under 740-nm pumping exhibited a frequency shift between H2O and D2O solutions, but that of Pfr obtained by 407-nm excitation under 633-nm pumping did not, indicating a distinct difference in a protonation state of their chromophores. Since the protonation level of a whole molecule of intact phytochrome remains unchanged between Pr and Pfr, this observation indicates migration of a proton from the chromophore of Pr to the protein moiety of Pfr. As model compounds, octaethylbiliverdin (OEBV-h3), its deuterated and 15N derivatives, and their protonated forms were also studied with both RR and 1H and 15N NMR spectroscopies. The RR spectrum of the protonated form, for which the protonation site was determined to be C-ring pyrrole nitrogen by NMR, displayed a deuteration shift corresponding to that of Pr, suggesting a similar protonated structure for the pyrrolic rings of Pr. The RR spectral difference between OEBV-h3 and OEBV-d3 and that between H2O and D2O solutions of Pfr suggested that the N-H protons of the A-, B-, and D-rings of intact phytochrome are replaced with deuterons in D2O. A role of the 7-kDa segment of phytochrome is discussed on the basis of RR spectral differences between the intact and large phytochromes.
    [Abstract] [Full Text] [Related] [New Search]