These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [cGMP-activated phosphodiesterase from human brain: kinetic and regulatory properties]. Author: Bobruskin ID, Medvedeva MV, Severin ES. Journal: Biokhimiia; 1991 Jun; 56(6):999-1010. PubMed ID: 1657216. Abstract: The kinetic and regulatory properties of cGMP-activated phosphodiesterase (PDE) from human brain were studied. In double reciprocal plots the enzyme activity is characterized by a linear dependence of cAMP and a nonlinear one for cGMP. Micromolar concentrations of cGMP accelerate cAMP hydrolysis (7-14-fold) with Ka for cGMP of 0.36 microM. Stimulation of cAMP hydrolysis is accompanied by a decrease of Km with no changes in Vmax. With a rise in the cGMP concentration above 5 microM PDE activation is changed by its inhibition. Both substrates act as competitive inhibitors towards each other. The Ki value for both cGMP and cAMP is 30 microM. After the increase in the cAMP (Bt)2 concentration the activation of 5 microM cAMP hydrolysis is accompanied by the enzyme inhibition. Both analogs competitively inhibit cGMP hydrolysis with Ki of 10 and 1500 microM for cGMP(Bt)2 and cAMP(Bt)2, respectively. The data obtained point to the existence of two binding sites for cyclic nucleotides, namely, a regulatory site which is highly specific for cGMP and a catalytic site responsible for the hydrolysis of the both substrates which displays no apparent specificity either for cAMP or for cGMP. The different affinity of natural and synthetic cyclic nucleotides for these sites is determined, to a large extent, by the amino groups in the 2nd and 6th positions of the purine ring.[Abstract] [Full Text] [Related] [New Search]