These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversible thermo-responsive sieving matrix for oligonucleotide separation.
    Author: Zhang J, Gassmann M, He W, Wan F, Chu B.
    Journal: Lab Chip; 2006 Apr; 6(4):526-33. PubMed ID: 16572215.
    Abstract:
    A reversible thermo-responsive gel system, consisting of Pluronic copolymer mixture of F87 and F127, has been used to successfully carry out the separation of oligonucleotides, for the first time, by microchip-based capillary electrophoresis. Pluronic triblock copolymers F87 (E(61)P(40)E(61)) and F127 (E(99)P(69)E(99)), with E, P, and subscript denoting oxyethylene, oxypropylene, and segment length respectively, have a unique temperature dependent viscosity-adjustable property and a dynamic coating ability in aqueous solution, including 1 x TBE buffer. The mixture solution has a reversible thermo-responsive property and its sol-gel transition temperature can be adjusted ranging from about 17 degrees C to 38 degrees C by varying the relative weight ratio of F87 and F127 at an optimized concentration of approximately 30% (w/v) for oligonucleotide separations. Oligonucleotide sizing markers ranging from 8 to 32 base could be successfully separated in a 1.5 cm long separation channel by the mixture solution in its gel-like state. A 30% (w/v) with a F87/F127 weight ratio of 1 ratio 2 which has a "sol-gel" transition point of about 26 degrees C shows the best sieving ability. The sieving ability of the mixture solution was further confirmed in an Agilent Bioanalyzer 2100 system. Fast separation of oligonucleotides has been achieved within 40 s with one base resolution.
    [Abstract] [Full Text] [Related] [New Search]