These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Author: Meyer MB, Watanuki M, Kim S, Shevde NK, Pike JW. Journal: Mol Endocrinol; 2006 Jun; 20(6):1447-61. PubMed ID: 16574738. Abstract: Transient receptor potential vanilloid type 6 (TRPV6) (ECAC2, CaT1) is the major ion channel in intestinal epithelial cell membranes responsible for calcium entry. Its expression is actively regulated at the transcriptional level by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. In this report, we identify mechanisms integral to the regulation of TRPV6 by 1,25-(OH)2D3. Based upon the hormonal responsiveness of a 7-kb TRPV6 promoter fragment in intestinal cell lines, we used a chromatin immunoprecipitation (ChIP) scanning method to search for possible vitamin D receptor (VDR) and retinoid X receptor (RXR) regulatory regions within the TRPV6 locus. VDR/RXR binding was broad, ranging from -1.2 to -5.5 kb relative to the start site of TRPV6 transcription. These results were consistent with an in silico analysis that revealed putative regulatory elements (VDREs) located at -1.2, -2.1, -3.5, -4.3, and -5.5 kb. Despite the ChIP analyses, only regions of the TRPV6 gene that contained putative elements at -2.1 and -4.3 kb transferred 1,25-(OH)2D3 response to a heterologous promoter. Further study revealed that each of these two active regions contained composite VDREs comprised of two separate regulatory elements. Mutagenesis of the VDREs within the -2.1- and -4.3-kb region and the VDRE at -1.2 kb abrogated all response to 1,25-(OH)2D3 when examined within the natural TRPV6 promoter. A final ChIP assay revealed that VDR/RXR heterodimer binding to the TRPV6 gene was accompanied by both the recruitment of steroid receptor coactivator 1 as well as a broad change in histone 4 acetylation. These studies identify a mechanism by which 1,25-(OH)2D3 regulates the expression of TRPV6 in human intestinal cells.[Abstract] [Full Text] [Related] [New Search]