These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human trachea primary epithelial cells express both sialyl(alpha2-3)Gal receptor for human parainfluenza virus type 1 and avian influenza viruses, and sialyl(alpha2-6)Gal receptor for human influenza viruses.
    Author: Kogure T, Suzuki T, Takahashi T, Miyamoto D, Hidari KI, Guo CT, Ito T, Kawaoka Y, Suzuki Y.
    Journal: Glycoconj J; 2006 Feb; 23(1-2):101-6. PubMed ID: 16575527.
    Abstract:
    We reported previously that the dominant receptors of influenza A and B viruses, and human and murine respiroviruses, were sialylglycoproteins and gangliosides containing monosialo-lactosamine type I-and II-residues, such as sialic acid-alpha2-3(6)-Galbeta1-3(4)-GlcNAcbeta1-. In addition, the Siaalpha2-3Gal linkage was predominantly recognized by avian and horse influenza viruses, and human parainfluenza virus type 1 (hPIV-1), whereas the Siaalpha2-6Gal linkage was mainly recognized by human influenza viruses (Paulson JC in "The Receptors'' [Conn M Ed] 2, 131-219 (1985); Suzuki Y, Prog Lipid Res 33, 429-57 (1994); Ito T, J Virol 73, 6743-51 (2000); Suzuki Y, J Virol 74, 11825-31 (2000); Suzuki T, J. Virol 75, 4604-4613 (2001); Suzuki Y, Biol. Pharm. Bull. 28, 399-408 (2005)). To clarify the distribution of influenza virus receptors on the human bronchial epithelium cell surface, we investigated a primary culture of normal human bronchial epithelial (NHBE) cells using two types of lectin (MAA and SNA), which recognize sialyl linkages (alpha2-3 and alpha2-6), using fluorescence-activated cell-sorting analysis. The results showed that both alpha2-3- and alpha2-6-linked Sias were expressed on the surface of primary human bronchial epithelial cells. The cells infected by hPIV-1 bound to MAA, confirming that cells targeted by hPIV-1 have alpha2-3-linked oligosaccharides. We also compared the ability of hPIV-1 and human influenza A virus to infect primary human bronchial epithelial cells pre-treated with Siaalpha2-3Gal-specific sialidase from Salmonella typhimurium. No difference was observed in the number of sialidase pre-treated and non-treated cells infected with human influenza A virus, which binds to Siaalpha2-6Gal-linked oligosaccharides. By contrast, the number of cells infected with hPIV-1 decreased significantly upon sialidase treatment. Thus, cultured NHBE cells showed both alpha2-3-linked Sias recognized by hPIV-1 and avian influenza virus receptors, and alpha2-6-linked Sias recognized by human influenza virus receptors.
    [Abstract] [Full Text] [Related] [New Search]