These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular Ca2+ pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5-trisphosphate and caffeine-ryanodine.
    Author: Zacchetti D, Clementi E, Fasolato C, Lorenzon P, Zottini M, Grohovaz F, Fumagalli G, Pozzan T, Meldolesi J.
    Journal: J Biol Chem; 1991 Oct 25; 266(30):20152-8. PubMed ID: 1657914.
    Abstract:
    Release of Ca2+ from intracellular stores was studied in the parent PC12 cell line and in recently isolated clones sensitive or insensitive to caffeine. In the caffeine-sensitive cells the cytosolic free Ca2+ concentration ([Ca2+]i) responses by the xanthine drug and by stimulants of receptors coupled to inositol 1,4,5-trisphosphate (Ins-P3) generation (bradykinin, ATP) depend on separate pathways because 1) caffeine does not stimulate the hydrolysis of phosphatidylinositol 4,5-bisphosphate and 2) Ca(2+)-induced Ca2+ release, the process activated by caffeine, plays no major role in the Ins-P3-induced Ca2+ mobilization. Although distinct, these two mechanisms converge onto the same Ca2+ store. In fact 1) the [Ca2+]i responses by receptor agonists and caffeine were not additive; 2) either type of agent reduced (up to complete inhibition) the response to a subsequent administration of the same or the other agent; 3) all these responses were prevented by selective Ca2+ ATPase blockers; 4) ryanodine, which affects the intracellular Ca2+ channel sensitive to caffeine, also induced depletion of the receptor-sensitive Ca2+ pool; 5) in the 10 PC12 clones tested, sensitivity to caffeine paralleled ryanodine sensitivity. Therefore, PC12 cells, similar to some smooth muscle fibers but at variance with neurons and other secretory cells, express a single, rapidly exchanging Ca2+ store in which two distinct intracellular Ca2+ channels, i.e. the receptors for caffeine-ryanodine and Ins-P3, appear to be colocalized.
    [Abstract] [Full Text] [Related] [New Search]