These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The zinc chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine, increases the level of nonfunctional HIF-1alpha protein in normoxic cells.
    Author: Choi SM, Choi KO, Lee N, Oh M, Park H.
    Journal: Biochem Biophys Res Commun; 2006 May 19; 343(4):1002-8. PubMed ID: 16579968.
    Abstract:
    The hypoxia-inducible factor-1alpha (HIF-1alpha) subunit is activated in response to lack of oxygen. HIF-1alpha-specific prolyl hydroxylase and factor inhibiting HIF-1alpha (FIH-1) catalyze hydroxylation of the proline and asparagine residues of HIF-1alpha, respectively. The hydroxyproline then interacts with ubiquitin E3 ligase, the von Hippel-Lindau protein, leading to degradation of HIF-1alpha by ubiquitin-dependent proteasomes, while the hydroxylation of the asparagine residue prevents recruitment of the coactivator, cAMP-response element-binding protein (CBP), thereby decreasing the transactivation ability of HIF-1alpha. We found that the Zn-specific chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), enhances the activity of HIF-1alpha-proline hydroxylase 2 but the level of HIF-1alpha protein does not fall because TPEN also inhibits ubiquitination. Since the Zn chelator does not prevent FIH-1 from hydroxylating the asparagine residue of HIF-1alpha, its presence leads to the accumulation of HIF-1alpha that is both prolyl and asparaginyl hydroxylated and is therefore nonfunctional. In hypoxic cells, TPEN also prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. As a result, Zn chelation causes the accumulation of nonfunctional HIF-1alpha protein in both normoxia and hypoxia.
    [Abstract] [Full Text] [Related] [New Search]