These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Minor groove binding of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to various duplex and triplex polynucleotides.
    Author: Jin B, Sub Shin J, Hwan Bae C, Kim JM, Kim SK.
    Journal: Biochim Biophys Acta; 2006 Jul; 1760(7):993-1000. PubMed ID: 16580778.
    Abstract:
    The binding site and the geometry of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (CoTMPyP) complexed with double helical poly(dA).poly(dT) and poly(dG).poly(dC), and with triple helical poly(dA).[poly(dT)](2) and poly(dC).poly(dG).poly(dC)(+) were investigated by circular and linear dichroism (CD and LD). The appearance of monomeric positive CD at a low [porphyrin]/[DNA] ratio and bisignate CD at a high ratio of the CoTMPyP-poly(dA).poly(dT) complex is almost identical with its triplex counterpart. Similarity in the CD spectra was also observed for the CoTMPyP-poly(dG).poly(dC) and -poly(dC).poly(dG).poly(dC)(+) complex. This observation indicates that both monomeric binding and stacking of CoTMPyP to these polynucleotides occur at the minor groove. However, different binding geometry of CoTMPyP, when bind to AT- and GC-rich polynucleotide, was observed by LD spectrum. The difference in the binding geometry may be attributed to the difference in the interaction between polynucleotides and CoTMPyP: in the GC polynucleotide case, amine group protrude into the minor groove while it is not present in the AT polynucleotide.
    [Abstract] [Full Text] [Related] [New Search]