These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: HSF expression in skeletal muscle during myogenesis: implications for failed regeneration in old mice. Author: McArdle A, Broome CS, Kayani AC, Tully MD, Close GL, Vasilaki A, Jackson MJ. Journal: Exp Gerontol; 2006 May; 41(5):497-500. PubMed ID: 16580804. Abstract: The ability of muscles of old mice to recover force generation following substantial damage is severely impaired, particularly during the late phase of regeneration. This inability to recover successfully may be associated with the attenuated ability of muscles of old mice to produce heat shock proteins (HSPs) in response to stress since muscles of old mice overexpressing HSP70 recover successfully following damage. The capacity of mature mammalian skeletal muscle to regenerate following damage is due to the presence of undifferentiated mononuclear myogenic precursor cells (satellite cells) at the periphery of mature skeletal muscle fibres. HSP expression is under the primary transcriptional control of heat shock factors 1 and 2 (HSF1 and HSF2). The aim of this study was to examine the expression of heat shock factors 1 and 2 by western blotting in mouse-derived C2C12 myoblasts as an experimental model system for investigating skeletal muscle regeneration. Data demonstrated that the HSF2 content of myotubes was significantly increased during the early stages of regeneration. In contrast, the HSF1 content of myotubes remained relatively low until late during regeneration. Thus, abnormal activation of HSF1 may play a role in the defective regeneration seen in muscles of old mice.[Abstract] [Full Text] [Related] [New Search]