These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Author: Atli G, Alptekin O, Tükel S, Canli M. Journal: Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jun; 143(2):218-24. PubMed ID: 16581305. Abstract: Catalase (CAT, EC 1.11.1.6) is an important enzyme in antioxidant defense system protecting animals from oxidative stress. Freshwater fish Oreochromis niloticus were exposed for 96 h to different concentrations of Ag(+), Cd(2+), Cr(6+), Cu(2+) and Zn(2+), known to cause oxidative stress, and subsequently CAT activities in liver, kidney, gill, intestine and brain were measured. In vivo, CAT was stimulated by all metals except Ag(+) in the liver and the highest increase in CAT activity (183%) resulted from 1.0 mg Cd(2+)/L exposure, whereas 0.5 mg Ag(+)/L exposure resulted in a sharp decrease (44%). In tilapia kidney, cadmium and zinc had no significant effects on CAT activity, whereas 0.1 mg Cr(6+)/L exposure caused a decrease (44%). Cadmium and zinc did not significantly affect the CAT activity in gill; however, 0.5 mg Ag(+)/L exposure caused an increase (66%) and 1.5 mg Cr(6+)/L exposure caused a decrease (97%) in CAT activity. All metals, except Cu(2+)(41% increase), caused significant decreases in CAT activity in the intestine. In brain, 1.0 mg Zn(2+)/L resulted in an increase in CAT activity (126%), while 1.5 mg Ag(+)/L exposure caused a 54% decrease. In vitro, all metals -- except Ag(+) and Cu(2+) in kidney -- significantly inhibited the CAT activity in all tissues. Results emphasized that CAT may be considered as a sensitive bioindicator of the antioxidant defense system.[Abstract] [Full Text] [Related] [New Search]