These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: trans activation of the simian virus 40 late promoter by large T antigen requires binding sites for the cellular transcription factor TEF-1. Author: Casaz P, Sundseth R, Hansen U. Journal: J Virol; 1991 Dec; 65(12):6535-43. PubMed ID: 1658359. Abstract: Simian virus 40 (SV40) T antigen stimulates the level of transcription from several RNA polymerase II promoters, including the SV40 late promoter. The mechanism of trans activation appears to be indirect since binding of T antigen to specific DNA sequences is not required. However, specific promoter elements that respond to T antigen have not previously been defined. We identified DNA sequences from the SV40 late promoter whose ability to stimulate transcription is induced by the expression of T antigen. In particular, the Sph I + II motifs of the SV40 enhancer can confer T-antigen inducibility to the normally uninducible herpes simplex virus thymidine kinase gene promoter when multiple copies of the sequence are inserted 5' of the transcription initiation site and TATA sequence. Binding sites for the cellular transcription factor TEF-1 and octamer binding proteins are contained within the Sph I + II motifs, as well as at other positions in the SV40 promoter. To study the role of individual protein-binding sites in trans activation by T antigen, mutations were constructed in various TEF-1 and octamer protein-binding sites of the SV40 late promoter. These mutations did not significantly affect basal promoter activity. However, mutation of all three TEF-1 sites prevented detectable activation by T antigen. DNase I footprinting of the mutated promoters with purified proteins demonstrated that inducibility by T antigen correlated with binding affinity of TEF-1 for the DNA and not with binding affinity of an octamer binding protein.[Abstract] [Full Text] [Related] [New Search]