These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Author: Marks JL, Porte D, Baskin DG. Journal: Mol Endocrinol; 1991 Aug; 5(8):1158-68. PubMed ID: 1658638. Abstract: Using multiple 35S-labeled oligonucleotide probes concurrently, the type I insulin-like growth factor receptor (IGF-I-R) mRNA was demonstrated by Northern blot hybridization in newborn and adult rat brain as a single species of approximately 11 kilobases. The probes were used to localize IGF-I-R mRNA by in situ hybridization in slices of adult rat brain. The highest levels of IGF-I-R mRNA expression were found in the glomerular and mitral cell body layers of the olfactory bulb, the granule cell body layers of the dentate gyrus and cerebellum, the pyramidal cell body layers of the piriform cortex and Ammon's horn, and the choroid plexus. The lowest levels of IGF-I-R mRNA expression were found in white matter. At the cellular level, IGF-I-R mRNA was expressed by a variety of neurons, by epithelial cells of the choroid plexus, and by ependymal cells of the third ventricle. Of the neuron types studied, the highest levels of IGF-I-R mRNA were consistently found in perikarya of mitral and tufted cells in the olfactory bulb, in pyramidal cells of the piriform cortex and Ammon's horn, and in granule cells of the dentate gyrus. There was a close congruency between the distribution of IGF-I binding and IGF-I-R mRNA at the regional level. Neuropil layers in the cerebral cortex, olfactory bulb, hippocampus, and cerebellum contained a high level of IGF-I binding, whereas the adjacent cell body layers contained a high level of the IGF-I-R mRNA. We conclude that in these regions, IGF-I-R mRNA is synthesized in neuronal cell bodies, and the receptors are transported to axons and dendrites in adjacent synapse-rich layers, where appropriate IGF effects are achieved.[Abstract] [Full Text] [Related] [New Search]