These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Author: Mohr G, Lambowitz AM. Journal: Nature; 1991 Nov 14; 354(6349):164-7. PubMed ID: 1658660. Abstract: Group I and II introns are mobile elements that propagate by insertion into different genes. Some introns of both types self-splice in vitro by transesterification reactions catalysed by the intron RNA. These transesterifications are reversible, and it has been suggested that reverse splicing followed by reverse transcription and recombination with genomic DNA may be a mechanism for intron transposition. In vivo the splicing of many, if not all, group I and II introns requires protein factors, which may facilitate correct folding of the intron RNAs. Here we show that the Neurospora mitochondrial large rRNA intron, a group I intron that is not self-splicing in vitro, undergoes reverse splicing in a reaction promoted by the CYT-18 protein, the Neurospora mitochondrial tyrosyl-tRNA synthetase, which is required for splicing the intron in vivo. In contrast to known RNA-catalysed reverse splicing reactions, this protein-assisted reverse splicing is sufficiently rapid to compete with forward splicing at low RNA concentrations under physiologically relevant conditions, including high GTP and low Mg2+ concentrations. Our results indicate that proteins that promote splicing could contribute to intron mobility by promoting reverse splicing in vivo.[Abstract] [Full Text] [Related] [New Search]