These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adrenergic and cholinergic inhibition of Ca2+ channels mediated by different GTP-binding proteins in rat sympathetic neurones.
    Author: Song SY, Saito K, Noguchi K, Konishi S.
    Journal: Pflugers Arch; 1991 Jul; 418(6):592-600. PubMed ID: 1658727.
    Abstract:
    Effects of acetylcholine (ACh) and noradrenaline (NA) on voltage-gated ion channels of sympathetic neurones acutely dissociated from rat superior cervical ganglion (SCG) were examined using the whole-cell voltage-clamp technique. Depolarizing voltage steps elicited two types of low- and high-voltage-activated (LVA and HVA) Ca2+ currents. Pressure applications of ACh and NA produced concentration-dependent inhibition of the HVA Ca2+ current without affecting the LVA Ca2+ current. The inhibitory action of ACh on the Ca2+ current was blocked by a muscarinic antagonist, atropine. The action of NA was suppressed by an alpha 2-adrenergic antagonist, yohimbine, but not by an alpha 1-adrenergic antagonist, prazosin. Delayed rectifying outward K+ currents and inward rectifying K+ current were not affected by either ACh or NA. Tetrodotoxin-sensitive and -insensitive Na+ currents also remained unaffected under actions of ACh and NA. When recorded with electrode containing guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), the inhibitory actions of ACh and NA on Ca2+ currents became irreversible. After treatment of SCG neurones with pertussis toxin, the inhibitory action of ACh on the Ca2+ current was almost completely abolished, whereas the action of NA was only partially reduced. The results suggest that ACh and NA differentially inhibit the HVA Ca2+ current via different G proteins coupling muscarinic and alpha 2-adrenergic receptors to Ca2+ channels in rat SCG neurones.
    [Abstract] [Full Text] [Related] [New Search]