These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synaptic stimulation alters protein phosphorylation in vivo in a single Aplysia neuron.
    Author: Lemos JR, Novak-Hofer I, Levitan IB.
    Journal: Proc Natl Acad Sci U S A; 1984 May; 81(10):3233-7. PubMed ID: 16593466.
    Abstract:
    Protein phosphorylation was examined in the identified Aplysia neuron R15, in vivo, after the intracellular injection of [gamma-(32)P]ATP. Two-dimensional gel electrophoretic analysis indicates that at least 70 proteins are phosphorylated within R15 during a 50-min labeling period. Application of serotonin (5HT) results in an increase in K(+) conductance in R15 and a concomitant change in the phosphorylation pattern: there are increases or decreases in the phosphorylation of some proteins, and at least five phosphoproteins appear that are not observed in control cells. Dopamine causes a decrease in voltage-dependent inward conductance in R15 and also alters the phosphorylation pattern: several of the phosphorylation changes are similar to those produced by 5HT, while others are unique to dopamine. Stimulation of the branchial nerve leading to the abdominal ganglion results in a long-lasting synaptic hyperpolarization of R15. The conductance changes underlying this response include an increase in K(+) conductance (identical to that produced by 5HT) together with a decrease in voltage-dependent inward conductance (identical to that produced by dopamine). The phosphorylation changes induced in R15 by branchial nerve stimulation resemble a combination of the changes induced by 5HT and dopamine. The results demonstrate that synaptic stimulation can modulate the phosphorylation of specific proteins in a single identified postsynaptic neuron and are consistent with the hypothesis that protein phosphorylation can regulate the regulate the activity of neuronal ion channels.
    [Abstract] [Full Text] [Related] [New Search]