These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity.
    Author: Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM.
    Journal: Hum Mol Genet; 2006 May 15; 15(10):1587-99. PubMed ID: 16595610.
    Abstract:
    P/Q-type voltage-gated calcium channels are regulated, in part, through the cytoplasmic C-terminus of their alpha1A subunit. Genetic absence or alteration of the C-terminus leads to abnormal channel function and neurological disease. Here, we show that the terminal 60-75 kDa of the endogenous alpha1A C-terminus is cleaved from the full-length protein and is present in cell nuclei. Antiserum to the C-terminus (CT-2) labels both wild-type mouse and human Purkinje cell nuclei, but not leaner mouse cerebellum. Human embryonic kidney cells stably expressing beta3 and alpha2delta subunits and transiently transfected with full-length human alpha1A contain a 75 kDa CT-2 reactive peptide in their nuclear fraction. Primary granule cells transfected with C-terminally Green fluorescent protein (GFP)-tagged alpha1A exhibit GFP nuclear labeling. Nuclear translocation depends partly on the presence of three nuclear localization signals within the C-terminus. The C-terminal fragment bears a polyglutamine tract which, when expanded (Q33) as in spinocerebellar ataxia type 6 (SCA6), is toxic to cells. Moreover, polyglutamine-mediated toxicity is dependent on nuclear localization. Finally, in the absence of flanking sequence, the Q33 expansion alone does not kill cells. These results suggest a novel processing of the P/Q-type calcium channel and a potential mechanism for the pathogenesis of SCA6.
    [Abstract] [Full Text] [Related] [New Search]