These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Treatment of osteoporosis with TheraCyte-encapsulated parathyroid cells: a study in a rat model.
    Author: Chou FF, Huang SC, Chen SS, Wang PW, Huang PH, Lu KY.
    Journal: Osteoporos Int; 2006; 17(6):936-41. PubMed ID: 16596462.
    Abstract:
    INTRODUCTION: The purpose of this study was to evaluate parathyroid function at monthly intervals following the implantation of TheraCyte-encapsulated live human parathyroid cells into ovariectomized rats and to determine the effect on bone mineral density (BMD) 4 months after ovariectomy ( 3 months after implantation). METHODS: Parathyroid tissues were obtained from patients undergoing surgery for secondary hyperparathyroidism. In total, 21 Sprague-Dawley rats divided randomly into three groups were subjected to one of three treatments: (1) implanted with TheraCyte A-encapsulated 4x10(6) live parathyroid cells; (2) implanted with TheraCyte B-encapsulated 4x10(5) live parathyroid cells; (3) a sham operation; the control group. Rats were ovariectomized 1 month prior to the implantation of the TheraCyte. Blood was drawn at the time of implantation and at monthly intervals thereafter for 3 months to check the levels of calcium, phosphorus and intact parathyroid hormone (iPTH). The BMD of the lumbar spine (L1-L5) and of the left femoral bone was measured with dual-energy-X-ray absorptiometry (DEXA) 1 month after ovariectomy and 3 months after implantation of the TheraCyte (4 months after ovariectomy). RESULTS: We found that the viability ratio of cryopreserved tissues was between 55 and 79% after thawing. In the control group, the BMD of the lumbar spine (L1-L5) had not decreased significantly (p=0.237) nor had the BMD of the left femoral bone increased significantly (p=0.063) 3 months after implantation. In the TheraCyte A group, the BMD of both the lumbar spine (p=0.018) and left femoral bone (p=0.018) had increased significantly 3 months after implantation. In the TheraCyte B group, the BMD of both the lumbar spine (p=0.017) and the left femoral bone (p=0.025) had also increased significantly 3 months after implantation. Serum iPTH levels were higher in the TheraCyte A group than in the TheraCyte B group (p=0.006), and higher in the TheraCyte B group than in the control group (p=0.040). Serum calcium levels were not significantly higher in the TheraCyte group A than in the TheraCyte B group or in the control group. Serum phosphorus levels were not significantly different between the TheraCyte A and TheraCyte B groups. CONCLUSIONS: Implantation of TheraCyte A-encapsulated 4x10(5) live parathyroid cells and TheraCyte B-encapsulated 4x10(6) cells can increase the BMD of ovariectomized rats within 3 months of implantation. Neither cause high serum calcium and low phosphorus concentrations.
    [Abstract] [Full Text] [Related] [New Search]