These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermal and flow measurements of continuous cryogenic spray cooling. Author: Hsieh SS, Tsai HH. Journal: Arch Dermatol Res; 2006 Jul; 298(2):82-95. PubMed ID: 16598481. Abstract: The performance of single sprays for high heat flux cooling using R-134a was studied. The heat flux and heat transfer coefficient at the surface of a sprayed jet based on measurements of steady-state temperature gradients on a thin copper plate during continuous spraying. Meanwhile, the spray droplets flow characteristics was also quantified through laser doppler velocimetry (LDV) measurements to obtain the local velocity distributions. The effects of mass flow rate and average droplet velocity, and spray exit-to-target distance on the surface heat flux including the corresponding critical heat flux (CHF) were explored through three different nozzle diameters of 0.2, 0.3, and 0.4 mm. Finally, the effective use of the fluid being delivered based on the cooling efficiency and cooling effectiveness was also examined. The relationship between CHF and nozzle performance in terms of cooling efficiency and cooling effectiveness was found. The heat transfer removal rate can reach up to 140 W/cm(2) for the present nozzle size of d (j)=0.2 and 0.3 mm, which may enhance the current cryogen spray cooling (CSC) technique that assists laser therapy of dermatoses.[Abstract] [Full Text] [Related] [New Search]