These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subthalamic nucleus lesioning inhibits expression and phosphorylation of c-Jun in nigral neurons in the rat's 6-OHDA model of Parkinson's disease.
    Author: Winter C, Hosmann K, Harnack D, Meissner W, Paul G, Morgenstern R, Kupsch A.
    Journal: Synapse; 2006 Jul; 60(1):69-80. PubMed ID: 16598703.
    Abstract:
    Parkinson's Disease (PD) is characterized by a loss of nigral dopamine (DA) neurons, followed by a striatal DA deficit. Inhibition of the subthalamic nucleus (STN) reverses L-DOPA sensitive motor symptoms and improves efficacy of pharmacotherapy in PD-patients. The underlying mechanism of these effects, however, remains largely unknown. Previously, we could show in the rat's 6-hydroxyDA (6-OHDA) model of PD that ablative STN-lesioning exerts functionally neuroprotective effects on the DAergic nigrostriatal pathway against 6-OHDA toxicity, in terms of elevating the number of tyrosine hydroxylase (TH)-expressing neurons rather than enhancing the total number of cells surviving 2 and 6 weeks post lesioning, as assessed via fluorogold staining. These data were correlated with increased functional recovery of 6-OHDA-lesioned rats with preceding STN-lesioning. Here, we extend the previous study design to observation periods of up to 12 weeks to assess long-term effects. Furthermore, to elucidate cellular mechanisms underlying potential neuroprotective effects, we explore the regulation of cellular markers involved in neurodegenerative cascades via immunocytochemistry. We show that preceding STN-lesioning significantly inhibits 6-OHDA induced expression/phosphorylation of the transcription factor c-Jun in surviving nigral neurons in comparison with controls. However, we also demonstrate that functionally neuroprotective effects of preceding STN-lesioning subside after 12 weeks, as assessed with TH immunostaining. We therefore conclude that c-Jun induction/phosphorylation is involved in 6-OHDA toxicity and that STN-lesioning transiently preserves of dopaminergic phenotype of nigral neurons partially via delaying the induction and attenuating the expression and phosphorylation of c-Jun.
    [Abstract] [Full Text] [Related] [New Search]