These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of bovine rod outer segment phosphatidylinositol-4,5-bisphosphate phospholipase C by calmodulin antagonists does not depend on calmodulin.
    Author: Gehm BD, Pinke RM, Laquerre S, Chafouleas JG, Schultz DA, Pepperl DJ, McConnell DG.
    Journal: Biochemistry; 1991 Nov 26; 30(47):11302-6. PubMed ID: 1659898.
    Abstract:
    Calmodulin antagonists stimulated phosphatidylinositol-4,5-bisphosphate phospholipase C in soluble and particulate fractions of bovine rod outer segments. Antagonists tested include trifluoperazine, melittin, calmidazolium, compound 48/80, W-13 [N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide], and W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide]. All were effective, but W-7 was chosen for further characterization of the effect, which was most pronounced in the soluble fraction. Phospholipase C activity in the soluble fraction did not increase linearly with the quality of enzyme assayed, suggesting the presence of an endogenous inhibitor or an inhibitory self-association of the enzyme. W-7 appeared to counteract this inhibition, resulting in a linear activity-quantity relationship. Stimulation by W-7 was therefore largest when large amounts of crude enzyme were assayed and small or nil when small amounts were assayed. The effect of W-7 was also dependent on [Ca2+], with half-maximal stimulation occurring between 0.1 and 1 microM. W-7 and W-13 were much more effective than their nonchlorinated analogues W-5 and W-12 at increasing phospholipase C activity. While this pattern of effectiveness is typical of calmodulin-mediated processes, the absence of any effect by added calmodulin and the retention of W-7 sensitivity by purified CaM-free enzyme argue against regulation by CaM. Octyl glucoside, a nonionic detergent, mimicked some of the effects of CaM antagonists, suggesting that the antagonists act by interfering with protein-protein interactions. It appears likely that CaM antagonists prevent an inhibitory multimerization or aggregation of at least one form of ROS phospholipase C.
    [Abstract] [Full Text] [Related] [New Search]