These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetic theory of binary nucleation based on a first passage time analysis.
    Author: Djikaev Y, Ruckenstein E.
    Journal: J Chem Phys; 2006 Mar 28; 124(12):124521. PubMed ID: 16599711.
    Abstract:
    The binary classical nucleation theory (BCNT) is based on the Gibbsian thermodynamics and applies the macroscopic concept of surface tension to nanosize clusters. This leads to severe inconsistencies and large discrepancies between theoretical predictions and experimental results regarding the nucleation rate. We present an alternative approach to the kinetics of binary nucleation which avoids the use of classical thermodynamics for clusters. The new approach is an extension to binary mixtures of the kinetic theory previously developed by Narsimhan and Ruckenstein and Ruckenstein and Nowakowski [J. Colloid Interface Sci. 128, 549 (1989); 137, 583 (1990)] for unary nucleation which is based on molecular interactions and in which the rate of emission of molecules from a cluster is determined via a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution of a "surface" molecule moving in a potential field created by the cluster. The starting master equation is a Fokker-Planck equation for the probability distribution of a surface molecule with respect to its phase coordinates. Owing to the hierarchy of characteristic time scales in the evolution of the molecule, this equation can be reduced to the Smoluchowski equation for the distribution function involving only the spatial coordinates. The new theory is combined with density functional theory methods to determine the density profiles. This is essential for nucleation in binary systems particularly when one of the components is surface active. Knowing these profiles, one can determine the potential fields created by the cluster, its rate of emission of molecules, and the nucleation rate more accurately than by using the uniform density approximation. The new theory is illustrated by numerical calculations for a model binary mixture of Lennard-Jones monomers and rigidly bonded dimers of Lennard-Jones atoms. The amphiphilic character of the dimer component (i.e., its surface activity) is induced by the asymmetry in the interaction between a monomer and the two different sites of a dimer. The inconsistencies of the BCNT are avoided in the new theory.
    [Abstract] [Full Text] [Related] [New Search]