These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of leptin-responsive neurons in the caudal brainstem.
    Author: Ellacott KL, Halatchev IG, Cone RD.
    Journal: Endocrinology; 2006 Jul; 147(7):3190-5. PubMed ID: 16601142.
    Abstract:
    The central melanocortin system plays a key role in the regulation of energy homeostasis. Neurons containing the peptide precursor proopiomelanocortin (POMC) are found at two sites in the brain, the arcuate nucleus of the hypothalamus (ARC) and the caudal region of the nucleus of the solitary tract (NTS). ARC POMC neurons, which also express cocaine- and amphetamine-regulated transcript (CART), are known to mediate part of the response to factors regulating energy homeostasis, such as leptin and ghrelin. In contrast, the physiological role(s) of the POMC neurons in the caudal brainstem are not well characterized. However, development of a transgenic mouse expressing green fluorescent protein under the control of the POMC promoter [POMC-enhanced green fluorescent protein (EGFP) mouse] has aided the study of these neurons. Indeed, recent studies have shown significant activation of NTS POMC-EGFP cells by the gut released satiety factor cholecystokinin (CCK). Here we show that peripheral leptin administration induces the expression of phospho-signal transducer and activator of transcription 3 immunoreactivity (pSTAT3-IR), a marker of leptin receptor signaling, in more than 50% of NTS POMC-EGFP neurons. Furthermore, these POMC-EGFP neurons comprise 30% of all pSTAT3-IR cells in the NTS. Additionally, we also show that in contrast to the ARC population, NTS POMC-EGFP neurons do not coexpress CART immunoreactivity. These data suggest that NTS POMC neurons may participate with ARC POMC cells in mediating some of the effects of leptin and thus comprise a novel cell group regulated by both long-term adipostatic signals and satiety factors such as CCK.
    [Abstract] [Full Text] [Related] [New Search]