These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microelectrode array for chronic deep-brain microstimulation and recording.
    Author: McCreery D, Lossinsky A, Pikov V, Liu X.
    Journal: IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580.
    Abstract:
    We have developed an array of microelectrodes that is suitable for long-term implantation into the subthalamic nucleus (STN) or the globus pallidus and is able to record from single neurons, as well as deliver localized microstimulation. This device can be used to investigate the mechanisms by which deep brain stimulation can ameliorate the symptoms of Parkinson's disease and other movement disorders, and also may be the basis for a new clinical tool for the treatment of Parkinson's disease, by capitalizing on the high spatial specificity of intranuclear microstimulation. The array includes 16 activated iridium microelectrodes, 5-6 mm in length, within a cluster approximately 1.8 mm in diameter. We have fabricated the array using materials carrying the USP Category VI classification, and we have developed an apparatus and a procedure for implanting the microelectrode arrays into the deep brain. Ten arrays have been implanted into the STN of domestic cats, and one into the internal segment of the globus pallidus, for 140-415 days. During that time, we were able to record action potentials from individual neurons, on 4 to 8 of the 16 channels. The microelectrode' active surface areas ranged from 500 to 2000 microm2. Controlled-current pulses, 26.5 microA in amplitude and 150 micros/phase in duration (4 nC/phase) were used to excite neurons in the cat's STN. In addition to direct activation, the stimulus modulated the neuronal activity over a distance of at least 1.2 mm from the site of stimulation. These parameters did not induce histologically detectable changes around the tip sites after 35 hours of stimulation at 100 Hz (7 hours of stimulation per day, on 5 successive days), if the electrode' active surface area was 1000 microm2 or greater.
    [Abstract] [Full Text] [Related] [New Search]