These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Global gene expression profiles associated with retinoic acid-induced differentiation of embryonal carcinoma cells. Author: Eifert C, Sangster-Guity N, Yu LM, Chittur SV, Perez AV, Tine JA, McCormick PJ. Journal: Mol Reprod Dev; 2006 Jul; 73(7):796-824. PubMed ID: 16604517. Abstract: We have evaluated the effects of retinoic acid (RA) treatment of F9 embryonal carcinoma (EC) cells, which induces differentiation into primitive endoderm, on gene expression patterns. F9 cells were exposed to RA in culture, and global expression patterns were examined with cDNA-based microarrays at early (8 hr) and later times (24 hr) after exposure. Of the 1,176 known transcripts examined, we identified 57 genes (4.8%) that were responsive to RA at 8 and/or 24 hr: 35 were induced, 20 were repressed, and 2 were differentially regulated at these time points. To determine if our results were dependent on the array technology employed, we also evaluated the response to RA at 24 hr with oligonucleotide-based arrays. With these more dense arrays (12,488 genes), we identified an additional 353 RA-regulated genes (2.8%): 173 were upregulated and 180 were downregulated. Thus, a total of 410 genes regulated by RA were identified with roughly equivalent numbers induced or repressed. Although the expression of many genes found on both array platforms was consistent, the results for some genes were disparate. Quantitative PCR studies on a subset of these genes supported the results obtained with the cDNA arrays. Our results confirmed the regulation of several known RA-responsive genes and we also identified a number of genes not previously known to be RA-responsive. Those novel genes that were induced presumably contribute to the cellular processes required for a shift from proliferation to differentiation, whereas those new genes that were downregulated may possibly contribute to the maintenance of cell proliferation.[Abstract] [Full Text] [Related] [New Search]