These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-acetylglucosaminyltranferase VB expression enhances beta1 integrin- dependent PC12 neurite outgrowth on laminin and collagen.
    Author: Lee I, Guo HB, Kamar M, Abbott K, Troupe K, Lee JK, Alvarez-Manilla G, Pierce M.
    Journal: J Neurochem; 2006 May; 97(4):947-56. PubMed ID: 16606368.
    Abstract:
    N-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model. PC12 cells stably transfected with GnT-VB consistently showed an enhanced rate of nerve growth factor (NGF)-induced neurite outgrowth on collagen and laminin substrates. Levels of TrkA receptor phosphorylation and downstream ERK activation induced by NGF were not influenced by GnT-VB expression. No significant difference was observed in the rate of neurite outgrowth when cells were cultured on non-coated culture dishes, indicating that integrin-ECM interaction is required for the stimulatory effects. Neurite outgrowth induced by manganese-dependent activation of beta1 integrin on collagen and laminin substrates, however, showed a significant increase in neurite length for the PC12/GnT-VB cells, compared with control cells, suggesting that the enhancement is most likely mediated by alteration of beta1 integrin-ECM interaction by GnT-VB. These results demonstrate that GnT-VB expression can modulate the rate of neurite outgrowth by affecting beta1 integrin-ECM interaction.
    [Abstract] [Full Text] [Related] [New Search]