These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Physics-based multiplicative scatter correction approaches for improving the performance of calibration models.
    Author: Thennadil SN, Martens H, Kohler A.
    Journal: Appl Spectrosc; 2006 Mar; 60(3):315-21. PubMed ID: 16608575.
    Abstract:
    Light scattering effects pose a major problem in the estimation of chemical properties of particulate systems such as blood, tissue, and pharmaceutical solids. Recently, Martens et al. proposed an extended multiplicative signal correction (EMSC) approach where light-scattering effects were taken into account in an empirical manner. It is possible to include causal, first-principles mathematical models based on the physics of light scattering into the EMSC framework. This could lead to significant improvements in the separation of absorption and scattering effects. A preconditioning step prior to application of EMSC, whereby a transformation based on the physics of light scattering is used to convert the spectra into a form where the absorption and scattering effects are separable (an underlying assumption of EMSC), is proposed. Results indicate that the transformation followed by EMSC gives better calibration models than the direct application of EMSC to the absorbance spectra.
    [Abstract] [Full Text] [Related] [New Search]