These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen.
    Author: Marczynski B, Raulf-Heimsoth M, Preuss R, Kappler M, Schott K, Pesch B, Zoubek G, Hahn JU, Mensing T, Angerer J, Käfferlein HU, Brüning T.
    Journal: Cancer Epidemiol Biomarkers Prev; 2006 Apr; 15(4):645-51. PubMed ID: 16614104.
    Abstract:
    We conducted a cross-shift study with 66 bitumen-exposed mastic asphalt workers and 49 construction workers without exposure to bitumen. Exposure was assessed using personal monitoring of airborne bitumen exposure, urinary 1-hydroxypyrene (1-OHP), and the sum of 1-, 2 + 9-,3-,4-hydroxyphenanthrene (OHPH). Genotoxic effects in WBC were determined with nonspecific DNA adduct levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and the formation of DNA strand breaks and alkali-labile sites. Concentration of fumes and aerosols of bitumen correlated significantly with the concentrations of 1-OHP and OHPH after shift (r(s) = 0.27; P = 0.03 and r(s) = 0.55; P < 0.0001, respectively). Bitumen-exposed workers had more DNA strand breaks than the reference group (P < 0.0001) at both time points and a significant correlation with 1-OHP and OHPH in the postshift urines (r(s) = 0.32; P = 0.001 and r(s) = 0.27; P = 0.004, respectively). Paradoxically, we measured higher levels of DNA strand breaks, although not significant, in both study groups before shift. 8-OxodGuo adduct levels did not correlate with DNA strand breaks. Further, 8-oxodGuo levels were associated neither with personal exposure to bitumen nor with urinary metabolite concentrations. Significantly more DNA adducts were observed after shift not only in bitumen-exposed workers but also in the reference group. Only low-exposed workers had significantly elevated 8-oxodGuo adduct levels before as well as after shift (P = 0.0002 and P = 0.02, respectively). Our results show that exposure to fumes and aerosols of bitumen may contribute to an increased DNA damage assessed with strand breaks.
    [Abstract] [Full Text] [Related] [New Search]