These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation and variability of prey capture kinematics in clariid catfishes.
    Author: Van Wassenbergh S, Herrel A, Adriaens D, Aerts P.
    Journal: J Exp Zool A Comp Exp Biol; 2006 Jul 01; 305(7):559-69. PubMed ID: 16615101.
    Abstract:
    Species with narrow or limited diets (trophic specialists) are expected to be less flexible in their feeding repertoire compared to species feeding on a wide range of different prey (trophic generalists). The ability to modulate prey capture kinematics in response to different prey types and prey position, as well as the overall variability in prey capture kinematics, is evaluated in four clariid species ranging from trophic generalist (Clarias gariepinus) to species with morphological specializations and a narrow diet (Channallabes apus and Gymnallabes typus). High-speed video recordings were made of prey captures on two prey that differ in shape, attachment strength and hardness. While the observed amount of strike-to-strike variability in prey capture kinematics is similar for all species and not influenced by prey type, only the two less specialized species showed the ability to modulate their prey capture kinematics in function of the presented prey types. All species did, however, show positional modulation during the strike by adjusting the magnitude of neurocranial elevation. These results indicate that the narrow dietary breadth of trophic specialists is indeed indicative of functional stereotypy in this group of fishes. Although most studies focussing on prey processing found a similar result, the present study is one of the few that was able to demonstrate this relationship when focussing on prey capture mechanics. Possibly, this relationship is less frequently observed for prey capture compared to prey processing because, regardless of prey type, the initial capture of prey requires a higher amount of variability.
    [Abstract] [Full Text] [Related] [New Search]