These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation. Author: Yu HQ, Mu Y. Journal: Biotechnol Bioeng; 2006 Aug 05; 94(5):988-95. PubMed ID: 16615161. Abstract: The experiment was conducted to evaluate the performance of an upflow anaerobic sludge blanket (UASB) with granules for H(2) production from a sucrose-rich synthetic wastewater at various substrate concentrations (5.33-28.07 g-COD/L) and hydraulic retention times (HRTs) (3-30 h) for over 3 years. The kinetics of H(2) production was evaluated, and the sludge yield and endogenous decay coefficient of the H(2)-producing granules were estimated to be 0.334 g-VSS/g-COD and 0.004/h, respectively. Based on Gibbs free energy calculations, the formation thermodynamics of caproate, an important aqueous product, were analyzed. Experimental results show that the H(2) partial pressure in biogas decreased with increasing substrate concentration, but was not sensitive to the variation of HRT in a range of 6-22 h. The H(2) production rate increased with increasing substrate concentration, but decreased with increasing HRT. The H(2) yield was in the range of 0.49-1.44 mol-H(2)/mol-glucose. Acetate, butyrate, caporate, and ethanol were the main aqueous products in the reactor, and their concentrations were dependent on both substrate concentration and HRT. An elevated substrate concentration resulted in a shift of fermentation from butyrate- to caporate-type in the reactor and the formation of caproate was dependent on the H(2) partial pressure. The 3-year experimental results demonstrate that H(2) could be produced continuously and stably from the acidogenic-granule-based UASB reactor.[Abstract] [Full Text] [Related] [New Search]