These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Both endothelium and afferent nerve endings play a role in acetylcholine-induced renal vasodilation. Author: Ay I, Tuncer M. Journal: Life Sci; 2006 Jul 24; 79(9):877-82. PubMed ID: 16616212. Abstract: We investigated the nature and signaling pathways of endothelium- and sensory-nerve ending-derived substances involved in acetylcholine-induced vasodilation in rat isolated perfused kidney. Endothelial denudation by Triton X-100 (0.2%, 0.1 ml) or depletion of afferent nerve endings by capsaicin (10(-6) mol/l) attenuated acetylcholine-induced vasodilation. When these two agents were administered together, the response to acetylcholine was completely inhibited. CGRP1 receptor blocker CGRP 8-37 (10(-7) mol/l) and adenosine A(2) receptor antagonist ZM 241 385 (10(-7) mol/l) inhibited acetylcholine-induced dilation. When indomethacin (10(-5) mol/l), a cyclooxygenase inhibitor, l-NOARG (10(-4) mol/l), a nitric oxide (NO) synthase inhibitor, and potassium chloride (30 mmol/l), to test EDHF response, were perfused simultaneously, the inhibition was greater than that was observed with each agent alone. Guanylate cyclase inhibitor ODQ (10(-5) mol/l) or protein kinase A inhibitor KT 5720 (5x10(-7) mol/l) inhibited acetylcholine-induced dilation. Gap junction uncoupler 18alpha-glycyrrhetinic acid (10(-4) mol/l) caused an uncontrollable increase in basal perfusion pressure making it impossible to test against acetylcholine-induced dilation. Our data suggest that NO, prostanoids, EDHF, and CGRP released from vascular endothelium and afferent nerve endings participate in acetylcholine-induced vasodilation and their signal transduction molecules include protein kinase A and guanylate cyclase.[Abstract] [Full Text] [Related] [New Search]