These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modelling migration behavior of peptide hormones in capillary electrophoresis-electrospray mass spectrometry.
    Author: Benavente F, Balaguer E, Barbosa J, Sanz-Nebot V.
    Journal: J Chromatogr A; 2006 Jun 02; 1117(1):94-102. PubMed ID: 16616758.
    Abstract:
    The applicability in capillary electrophoresis-electrospray mass spectrometry (CE-ESI-MS) of the classical semiempirical relationships between electrophoretic mobility and charge-to-mass ratio (me versus q/Malpha) has been investigated in order to describe the migration behavior of a series of bioactive peptide hormones. The influence upon the models of the separation electrolyte pH and the accuracy of the pK values of these compounds were studied first by capillary electrophoresis with ultraviolet detection (CE-UV). The classical polymer model, alpha = 1/2, resulted in slightly better correlations at any of the studied pH. Furthermore, a general linear equation can be adjusted combining all the experimental data pairs, which suggests that correlation in the whole pH range is independent of the ionic form of the studied peptide hormones. The plots of q/M1/2 against separation electrolyte pH were used to predict their electrophoretic separations, using the accurate pK values obtained in a previous work by CE-UV for charge calculations. A volatile separation electrolyte containing 50 mM of acetic acid and 50 mM of formic acid at pH 2.85 was selected for optimum CE-UV and CE-ESI-MS analysis of the peptide mixture. At this pH and taking into account the specific features of the coupling, the correlation using the classical polymer law was excellent and its parameters were similar to the ones of the general linear equation previously obtained by CE-UV. This confirmed the applicability in CE-ESI-MS of the semiempirical relationship originally established by CE-UV.
    [Abstract] [Full Text] [Related] [New Search]