These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multireplicon genome architecture of Lactobacillus salivarius.
    Author: Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeño-Tárraga AM, Parkhill J, Flynn S, O'Sullivan GC, Collins JK, Higgins D, Shanahan F, Fitzgerald GF, van Sinderen D, O'Toole PW.
    Journal: Proc Natl Acad Sci U S A; 2006 Apr 25; 103(17):6718-23. PubMed ID: 16617113.
    Abstract:
    Lactobacillus salivarius subsp. salivarius strain UCC118 is a bacteriocin-producing strain with probiotic characteristics. The 2.13-Mb genome was shown by sequencing to comprise a 1.83 Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids. Megaplasmids previously have not been characterized in lactic acid bacteria or intestinal lactobacilli. Annotation of the genome sequence indicated an intermediate level of auxotrophy compared with other sequenced lactobacilli. No single-copy essential genes were located on the megaplasmid. However, contingency amino acid metabolism genes and carbohydrate utilization genes, including two genes for completion of the pentose phosphate pathway, were megaplasmid encoded. The megaplasmid also harbored genes for the Abp118 bacteriocin, a bile salt hydrolase, a presumptive conjugation locus, and other genes potentially relevant for probiotic properties. Two subspecies of L. salivarius are recognized, salivarius and salicinius, and we detected megaplasmids in both subspecies by pulsed-field gel electrophoresis of sizes ranging from 100 kb to 380 kb. The discovery of megaplasmids of widely varying size in L. salivarius suggests a possible mechanism for genome expansion or contraction to adapt to different environments.
    [Abstract] [Full Text] [Related] [New Search]