These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase.
    Author: Zimmerman SA, Ferry JG.
    Journal: Biochemistry; 2006 Apr 25; 45(16):5149-57. PubMed ID: 16618104.
    Abstract:
    The crystal structure of Cam, the prototypic gamma-class carbonic anhydrase, reveals active site residues Gln75, Asn73, and Asn 202 previously hypothesized to participate in catalysis. These potential roles were investigated for the first time by kinetic analyses of site-specific replacement variants of the zinc and cobalt forms of Cam. Gln75 replacement variants showed large decreases in k(cat)/K(m) relative to wild-type. Further, the Gln75 variants showed a loss of the pK(a) in pH versus k(cat)/K(m) profiles previously attributed to ionization of the metal-bound water yielding the hydroxyl group attacking CO(2). These results support the previously proposed role for Gln75 in hydrogen bonding with the catalytic hydroxyl orienting it for attack on CO(2). Kinetic analyses of Asn73 variants were consistent with a role in hydrogen bonding with Gln75 to position it for optimal interaction with the catalytic hydroxyl. Kinetic analyses of Asn202 variants showed substantial decreases in k(cat)/K(m) relative to the wild-type enzyme supporting the previously hypothesized role in polarizing CO(2) and facilitating attack from the metal-bound hydroxyl. On the basis of results presented here, and previously reported structural analyses, we present a catalytic mechanism involving Gln75, Asn73, and Asn202 that also suggests a role for Glu62 not previously recognized. Finally, the results suggest that the gamma-, beta-, and alpha-class carbonic anhydrases each independently evolved variations of a fundamental hydrogen bond network essential for catalysis.
    [Abstract] [Full Text] [Related] [New Search]