These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extremely high conservation in the untranslated region as well as the coding region of CNP mRNAs throughout elasmobranch species.
    Author: Hyodo S, Kawakoshi A, Bartolo RC, Takei Y, Toop T, Donald JA.
    Journal: Gen Comp Endocrinol; 2006 Sep 01; 148(2):181-6. PubMed ID: 16620814.
    Abstract:
    C-type natriuretic peptide (CNP) is a crucial osmoregulatory hormone in elasmobranchs, participating in salt secretion and drinking. In contrast to teleosts and tetrapods in which the NP family is composed of a group of structurally related peptides, we have shown that CNP is the sole NP in sharks. In the present study, CNP cDNAs were cloned from four species of batoids, another group of elasmobranchs. The cloned batoid CNP precursors contained a plausible mature peptide of 22 amino acid residues that is identical to most shark CNP-22s, but five successive amino acids were consistently deleted in the prosegment compared with shark precursors, supporting the diphyletic classification of sharks and rays. In addition, molecular phylogenetic trees of CNP precursors were consistent with a diphyletic interpretation. Except for the deletion, the nucleotide and deduced amino acid sequences of the CNP cDNAs are extremely well-conserved among all elasmobranch species, even between sharks and rays. Surprisingly, high conservation is evident not only for the coding region, but also for the untranslated regions. It is most likely that the high conservation is due to the low nucleotide substitution rate in the elasmobranch genome, and high selection pressure. The 3'-untranslated region of the elasmobranch CNP cDNAs contained three to six repeats of the ATTTA motif that is associated with the regulation of mRNA stability and translation efficiency. Alternative polyadenylation sites were also found; the long 3'-untranslated region contains a core of ATTTA motifs while the short form has only one or no ATTTA motif, indicating that the post-transcriptional modification of mRNA is important for regulation of CNP synthesis. These characteristics in the 3'-untranslated region were conserved among all elasmobranch CNP cDNAs. Since CNP has been implicated as a fast-acting hormone to facilitate salt secretion from the rectal gland, the conserved 3'-untranslated region most likely contributes to rapid regulation of CNP synthesis in elasmobranchs in response to acute changes in internal and external environments.
    [Abstract] [Full Text] [Related] [New Search]