These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photodissociation of cyclobutyl bromide at 234 nm studied using velocity map imaging. Author: Liu Y, Lau KC, Butler LJ. Journal: J Phys Chem A; 2006 Apr 27; 110(16):5379-85. PubMed ID: 16623465. Abstract: This study investigates the 234 nm photodissociation dynamics of cyclobutyl bromide using a two-dimensional photofragment velocity imaging technique. The spin-orbit ground- and excited-state Br(2P) atoms are state-selectively detected via [2+1] resonance enhanced multiphoton ionization (REMPI), whereas the cyclobutyl radicals are ionized using 157 nm laser light. The Br(2P(3/2)) and the Br(2P(1/2)) atoms and their c-C4H7 radical cofragments evidence a single-peaked, Gaussian-shaped translational energy distribution ranging from approximately 14 to approximately 39 kcal/mol and angular distributions with significant parallel character. The Br(2P(1/2))/ Br(2P(3/2)) spin-orbit branching ratio is determined to be 0.11 +/- 0.07 by momentum match between the Br(2P) photofragments and the recoiling c-C4H7 fragments, assuming a uniform photoionization probability of the c-C4H7 radicals with an internal energy range of 10-35 kcal/mol. The REMPI line strength ratio for the detection of Br(2P(3/2)) and Br(2P(1/2)) atoms at 233.681 and 234.021 nm, respectively, is therefore derived to be 0.10 +/- 0.07. The measured recoil kinetic energies of the c-C4H7 radicals, and the resulting distribution of internal energies, indicates some of the radicals are formed with total internal energies above the barrier to isomerization and subsequent dissociation, but our analysis indicates they may be stable due to the substantial fraction of the internal energy which is partitioned to rotational energy of the radicals.[Abstract] [Full Text] [Related] [New Search]