These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gibbs energies of transfer of alkali metal cations between mutually saturated water-solvent systems determined from extraction experiments with radiotracer 137Cs.
    Author: Rais J, Okada T, Alexova J.
    Journal: J Phys Chem B; 2006 Apr 27; 110(16):8432-40. PubMed ID: 16623529.
    Abstract:
    Thermodynamic standard Gibbs energies of transfer of alkali metal cations related to Cs+ cation [DeltatG degrees*,(Cs+)-[DeltatG degrees*,(M+)] between several mutually saturated solvents of the type water-solvent were calculated from determined extraction exchange constants Kexch degrees,*(Cs+/M+). The used liquid-liquid extraction method with radioactive tracing by 137Cs permits attaining higher precision of the values as compared to the methods used up to now. The data for o-nitrophenyloctyl ether, 1,2-dichloroethane, and 1-octanol were compared with literature sources and recommended absolute values of DeltatG degrees,*M+) are reported. For dissociating solvents, the dependences of [DeltatG degrees,*(Cs+) - [DeltatG degrees,*(M+)] on Gibbs energy of hydration of an ion, DeltaGhydr degrees are straight lines either for four cations Cs+, Rb+, K+, and Na+ (nitrosolvents) or for three cations Cs+, Rb+, and K+ (1,2-dichloroethane and 1-octanol). The hydration of Na+ and still more of Li+ in the water-saturated organic phase is apparent from the results. This manifests for high-water-content equilibrium 1-octanol even in a reversal of the values [i.e., DeltatG degrees*,(Li+) being more negative than DeltatG degrees,*(Na+)], although for Cs+, Rb+, and K+, the general trend is conserved. Water-saturated 1-octanol is thus slightly less basic than water, but the overall selectivity is very low. For one studied nondissociating solvent, dioctyl sebacate, the trend of the dependences of log Kexch degrees,*(CsB/M+) on DeltaGhydr degrees is similar to that of Kexch degrees,*(Cs+/M+) for polar solvents, but different for different anions B, thus reflecting ion association in the organic phase.
    [Abstract] [Full Text] [Related] [New Search]