These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thiamine-like fibers in the monkey brain: an immunocytochemical study. Author: Mangas A, Coveñas R, Geffard K, Geffard M, Marcos P, Insausti R, Dabadie MP. Journal: Life Sci; 2006 Aug 15; 79(12):1121-8. PubMed ID: 16624330. Abstract: The distribution of thiamine-immunoreactive structures was studied in the brain of the monkey using an indirect immunoperoxidase technique. Fibers containing thiamine, but no thiamine-immunoreactive cell bodies, were found. The highest density of fibers containing thiamine was observed in the pulvinar nucleus and in the region extending from the pulvinar nucleus to the caudate nucleus. In the mesencephalon, immunoreactive fibers containing thiamine were only found at rostral level close to the medial lemniscus (at the mesencephalic-diencephalic junction). In the thalamus, the distribution of thiamine-immunoreactive structures was more widespread. Thus, immunoreactive fibers were found in nuclei close to the midline (centrum medianum/parafascicular complex), in the ventrolateral thalamus (medial geniculate nucleus, inferior pulvinar nucleus), and in the dorsolateral thalamus (lateral posterior nucleus, pulvinar nucleus). Finally, in the anterior commissure and in the cerebral cortex a low density immunoreactive fibers was visualized. Thus, in the brainstem, no immunoreactive structures were visualized in the medulla oblongata, pons, or in the medial-caudal mesencephalon, and no immunoreactive fibers were observed in the cerebellum, hypothalamus and in the basal ganglia. The present report describes the first visualization and the morphological characteristics (thick, smooth and short, medium or long in length) of the thiamine-immunoreactive fibers in the primate central nervous system using an antiserum directed against this vitamin. The distribution of thiamine-immunoreactive structures in the monkey brain suggests that this vitamin could be involved in several physiological mechanisms.[Abstract] [Full Text] [Related] [New Search]