These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phospholipase C-beta 1 is regulated by a pertussis toxin-insensitive G-protein.
    Author: Martin TF, Lewis JE, Kowalchyk JA.
    Journal: Biochem J; 1991 Dec 15; 280 ( Pt 3)(Pt 3):753-60. PubMed ID: 1662486.
    Abstract:
    Regulation of phospholipase C (PLC) by receptors is mediated either through protein tyrosine phosphorylation or by activation of GTP-binding proteins (Gp). For the latter, pertussis toxin (PT)-sensitive and -insensitive pathways have been described, indicating PLC regulation by at least two types of G-proteins. The identity of PLC isoenzymes which are regulated by either type of Gp remains to be determined. Thyrotropin-releasing hormone stimulates a PLC in GH3 cells via a PT-insensitive Gp. Reconstitution methods for the assay of the GH3-cell Gp were developed. Previously, the membrane PLC was found to be reversibly extracted from membranes by high salt and to be activated by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) only when membrane-associated, suggesting that Gp was retained in salt-extracted membranes. In the present work, Gp was cholate-solubilized from PLC-deficient membranes and incorporated into phospholipid vesicles, which were found to confer GTP[S]- and AlF4(-)-stimulated activity on a solubilized membrane PLC. The reconstitution provided a direct assay for the GH3-cell Gp which was shown to be distinct from Gi, Go and Gs proteins by immunodepletion studies. Incorporation of G-protein beta-gamma subunits into phospholipid vesicles with Gp inhibited GTP[S]-stimulated activity in the reconstitution. The results indicated that Gp is a heterotrimeric G-protein with the properties expected for the PT-insensitive GH3-cell Gp protein. PLC-beta 1 was fully purified and shown to be regulated by Gp in the reconstitution. In contrast, PT-sensitive G-proteins failed to affect the activity of PLC-beta 1. The results indicate (1) that a PT-insensitive Gp regulates PLC-beta 1 and (2) that PT-sensitive and -insensitive pathways of PLC regulation employ different PLC isoenzymes as well as different G-proteins.
    [Abstract] [Full Text] [Related] [New Search]