These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat.
    Author: Avwenagha O, Bird MM, Lieberman AR, Yan Q, Campbell G.
    Journal: Neuroscience; 2006 Jul 07; 140(3):913-28. PubMed ID: 16626872.
    Abstract:
    We have examined the cellular and subcellular distribution and the patterns of expression of brain-derived neurotrophic factor (BDNF), and of its high affinity receptor, tyrosine kinase B (TrkB), in retinorecipient regions of the brain, including the superior colliculus, the lateral geniculate nucleus and the olivary pretectal nucleus. In the retinorecipient layers of the superior colliculus, BDNF protein and mRNA were present in the cell bodies of a subpopulation of neurons, and BDNF protein was present in the neuropil as punctate or fiber-like structures. In the lateral geniculate nucleus, however, BDNF mRNA was not detected, and BDNF protein was restricted to punctate and fiber-like structures in the neuropil, especially in the most superficial part of the dorsal lateral geniculate nucleus, just below the optic tract. At the ultrastructural level, BDNF protein was localized predominantly to axon terminals containing round synaptic vesicles and pale mitochondria with irregular cristae, which made asymmetric (Gray type I) synaptic specializations (R-boutons). Enucleation of one eye was followed by loss of BDNF immunoreactivity and disappearance of BDNF-positive R-boutons in the contralateral visual centers, confirming the retinal origin of at least most of these terminals. TrkB was present in postsynaptic densities apposed to immunoreactive R-boutons in the superior colliculus and lateral geniculate nucleus, and was also associated with axonal and dendritic microtubules. These findings suggest that BDNF is synthesized by a subpopulation of retinal ganglion cells and axonally transported to visual centers where this neurotrophin is assumed to play important roles in visual system maintenance and/or in modulating the excitatory retinal input to neurons in these centers.
    [Abstract] [Full Text] [Related] [New Search]