These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phylogeny of certain biocontrol agents with special reference to nematophagous fungi based on RAPd.
    Author: Jarullah BM, Subramanian RB, Jummanah MS.
    Journal: Commun Agric Appl Biol Sci; 2005; 70(4):897-903. PubMed ID: 16628936.
    Abstract:
    A number of phylogenetic studies have been carried out on biocontrol agents having similar biological control activity. However, no work has been carried out to determine the phylogenetic relationship amongst various groups of biological control agents with varied biocontrol properties. Our aim was to derive a phylogenetic relationship between diverse biocontrol agents belonging to the deuteromycetes and determine its correlation with their spore morphology and their biocontrol activity. RAPD was used to assess genomic variability in fungi used as biological control agents which included ten isolates of nematophagous fungi such as Arthrobotrys sp., Duddingtonia sp., Paecilomyces sp. and Verticillium sp., along with two isolates of fungal biocontrol agents such as Trichoderma sp. and two isolates of entomopathogenic fungi including Beauveria sp. A plant pathogenic fungus, Verticillium alboatrum was also included to increase the diversity of Deuteromycetes used. A similarity matrix was created using Jaccard's similarity coefficient & clustering was done using unweighted pair group arithmetic mean method (UPGMA). The final dendogram was created using a combination of two programs, Freetree and TreeExplorer. The phylogenetic tree constructed from the RAPD data showed marked genetic variability among different strains of the same species. The spore morphologies of all these fungi were also studied. The phylogenetic pattern could be correlated with the conidial and conidiophore morphology, a criterion commonly used for the classification of fungi in general and Deuteromycetes in particular. Interestingly, the inferred phylogeny showed no significant grouping based on either their biological control properties or the trapping structures amongst the nematophagous fungi as reported earlier by other workers. The phylogenetic pattern was also similar to the tree obtained by comparing the 18S rRNA sequences from the database. The result clearly indicates that the classical method of classification of these deuteromycete members on the basis of their spore morphology is reliable and could be used for identification of these fungi at species level. The PCR fragment pattern polymorphism exhibited by the various species of a genus and different strains of a species indicates that construction of probes from one or more of these fragments will prove to be useful as a rapid tool for identification of species and strains of nematophagous fungi in future.
    [Abstract] [Full Text] [Related] [New Search]